出“认知负荷理论”(CognitiveLoadTheory,简称CLT)。随后认知负荷理论开始在实践教学领域被广泛研究,并取得了一定的研究成果。诸多研究证明,认知负荷理论为研究教学过程中的认知处理提供了一种新的理论框架,对教学实践具有极其现实的指导意义。正如Alexander(1997)所论证,认知负荷被看作是教学活动设计的一个重要因素,教学活动是否有效取决于(或部分取决于)它能否减少不必要的认知负荷。
一、认知负荷理论的基本观点
认知负荷理论是基于人脑工作记忆(workingmemory)的有限性发展起来的。在人的信息加工系统中,短时记忆(short-termMemory)是一种工作记忆,主要处理从感觉记忆(sensorymemory)和长时记忆(long-termmemory)中提取出来的信息,在整个信息加工系统中起着支配信息加工系统中信息流的作用,对认知活动的顺利开展有着至关重要的作用。认知负荷理论十分关注学习过程中的工作记忆的作用,其基本观点可概括为:(1)工作记忆的容量是极其有限的,长时记忆的容量在本质上是无限的,所有的信息在进入长时记忆之前,必须在工作记忆中进行信息加工;(2)学习过程要求将工作记忆积极地用于理解(和处理)材料并对即将习得的信息进行编码以储存在长时记忆中;(3)如果学习者所要加工的信息容量超出了学习者的工作记忆所能加工的信息容量,那么学习将变得无效。在此基础上,J.Sweller等人认为,问题解决和学习过程中的各种认知加工活动均需消耗认知资源,产生一定的认知负荷,若所有活动所需的资源总量超过了工作记忆的容量,就会引起资源分配的不足,从而影响个体学习或问题解决的效率,这种情况被称为认知超载(cognitiveoverload)。
二、认知负荷的概念及其结构
自20世纪80年代认知负荷理论问世以来,人们对认知负荷(cognitiveload)概念的理解一直是众说纷纭。如Cooper(1990)认为认知负荷是指加工特定数量信息所要求的心理能量水平;J.Sweller等(1998)认为认知负荷就是将特定工作加之于学习者认知系统时所产生的负荷;辛自强等(2002)认为认知负荷可被视作是加工特定数量信息所要求的脑力劳动,随着加工的信息数量的增加,认知负荷也增加;林崇德等(2005)认为认知负荷指的是一个事例中智力活动强加给工作记忆的数量;赖日生等(2005)认为认知负荷指的是在某种场合施加到工作记忆中的智力活动的总的数量;杨心德等(2007)认为认知负荷是完成某项任务而在工作记忆上所进行的心智活动所需的全部心智能量。结合以上不同解释,笔者认为,认知负荷是人们为顺利完成特定工作任务,实际投入到工作记忆中去的认知资源的总和,包括必需的和不必需的。
从结构上来看,认知负荷由内在认知负荷(IntrinsicCognitiveLoad)、外在认知负荷(ExtraneousCognitiveLoad)和相关认知负荷(GermaneCognitiveLoad)组成:(1)内在认知负荷由材料本身的固有特性(如难度和复杂度)和学习者原有的知识水平,以及这两者的交互作用决定,一般认为内在认知负荷是相对固定的,不能被教学设计(InstructionDesign)所改变,但近来也有学者认为内在认知负荷是可以改变的(Pollocketal,2002;Peteretal,2004);(2)外在认知负荷来源于教学材料的呈现方式和教学设计,一般与教学内容的不合理组织和设计有关,能通过教学内容的重新组织和设计进行调整;(3)相关认知负荷是与学习者主观领域相关的信息,指学习者在图式(Schema)建构和自动化过程中意欲投入的认知资源的数量[2],它与学生的认知努力有关,提高学生的相关认知负荷,可以引导学生利用剩余认知资源进行深层次的图式建构,因此,Bannert(2002)将其看作图式建构和自动化的工具[3]。
三、认知负荷理论对教学工作的启示
为避免教学中学生认知负荷总量超过其工作记忆容量,认知负荷理论的教学原理就是:尽可能降低学生的内在认知负荷和外在认知负荷;并在确保工作记忆资源有所盈余的前提下,适当引导学生投入更多的心理努力(MentalEffort),提高其相关认知负荷,实现图式的获得与规则的自动化。如前所述,教学活动中学生内在认知负荷与教学材料的特点和学生的认知水平有关,外在认知负荷与教学材料的呈现方式和教学设计水平有关,相关认知负荷与学生的认知努力(MentalEffort)有关。为此,我们可以从以下几个方面来优化教学活动中学生的认知负荷结构,提高教学效果。
(一)控制内在认知负荷:充分考虑教材特点与学生认知水平及其交互作用
一般认为内在认知负荷是由学习材料的本质所决定的,不能通过教学设计的改变而改变,但Pollocketal(2002)和Peteretal(2004)的实验提出了异议。[4]两个实验共同点在于利用材料的信息排序原理降低内在认知负荷。Pollocketal首先向学生分批展示学习材料,然后一次性地全部展示,这种学习材料排序法,尤其是对初学者而言,能更好地促进对学习材料的深层次理解(引自Bannert,2002)。而Peteretal改变了传统样例教学(ExampleInstruction)方式,把样例分解成几个能单独理解的成分,他的五个实验最终结果一致表明,新的样例呈现方式降低了材料给学生带来的内在认知负荷。
TracyClarke,PaulAyres与JohnSweller也在他们的“TheImpactofSequencingandPriorKnowledgeonLearningMathematics:ThroughSpreadsheetApplications”一书中研究了一种改变固有认知负荷的渐进方法。他们使用Spreadsheet软件来形成学生的数学技能。学生被分为两类。一类学生对Spreadsheet不怎么熟悉,另一类学生对Spreadsheet有较好的了解。每一类学生又一分为二,分别接受两种先训练:一种训练是先使用Spreadsheet软件,再训练利用这种软件发展数学技能;另一种训练是练习Spreadsheet软件技能与练习数学技能同时进行。结果显示对于事先不熟悉Spreadsheet的学生来说,顺序呈现优于并发呈现,测验成绩也更高;但对于事先已了解Spreadsheet的学生来说,情况正好相反。这说明,对于知识技能水平低的学生来说,采用“先学习技能后学习特定内容领域的概念”这种策略能提升他们的学习;对他们来说,技术内容很可能具有高元素交互性,如果同时学习技术技能和特定学科领域的概念,内在认知负荷可能会增加[5]。而对技能水平低的学生来说,技术内容不具备高元素交互性,同时学习技术技能和特定学科领域的概念,内在认知负荷不会增加。在决定顺序策略时,学生的技术技能水平以及内容的元素交互性水平,是至为关键的变量(Kalyuga等,2003;VanMerrienboer,Kirschner&Kester,2003)。